
A Toolbox for Isophase-Curvature
Guided Computation of
Metrology Holograms

User Manual
Ulf Griesmann, April 27, 2020

 1

Copyright and Disclaimers

This software was developed by employees of the National Institute of
Standards and Technology (NIST), an agency of the Federal Government,
and is being made available as a public service. Pursuant to title 17
United States Code Section 105, works of NIST employees are not
subject to copyright protection in the United States and are in the
Public Domain. This software may be subject to foreign copyright.
Permission in the United States and in foreign countries, to the
extent that NIST may hold copyright, to use, copy, modify, create
derivative works, and distribute this software and its documentation
without fee is hereby granted on a non-exclusive basis, provided that
this notice and disclaimer of warranty appears in all COPIES.

THIS SOFTWARE IS BEING PROVIDED FOR RESEARCH AND EDUCATIONAL PURPOSES
ONLY. THE SOFTWARE IS PROVIDED 'AS IS' WITHOUT ANY WARRANTY OF ANY
KIND, EITHER EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING, BUT NOT
LIMITED TO, ANY WARRANTY THAT THE SOFTWARE WILL CONFORM TO
SPECIFICATIONS, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE, AND FREEDOM FROM INFRINGEMENT, AND ANY
WARRANTY THAT THE DOCUMENTATION WILL CONFORM TO THE SOFTWARE, OR ANY
WARRANTY THAT THE SOFTWARE WILL BE ERROR FREE. IN NO EVENT SHALL NIST
BE LIABLE FOR ANY DAMAGES, INCLUDING, BUT NOT LIMITED TO, DIRECT,
INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES, ARISING OUT OF, RESULTING
FROM, OR IN ANY WAY CONNECTED WITH THIS SOFTWARE, WHETHER OR NOT
BASED UPON WARRANTY, CONTRACT, TORT, OR OTHERWISE, WHETHER OR NOT
INJURY WAS SUSTAINED BY PERSONS OR PROPERTY OR OTHERWISE, AND WHETHER
OR NOT LOSS WAS SUSTAINED FROM, OR AROSE OUT OF THE RESULTS OF, OR
USE OF, THE SOFTWARE OR SERVICES PROVIDED HEREUNDER.

The full description of the software and procedures described in this
User Manual requires the identification of certain commercial
products and their suppliers. The inclusion of such information does
not indicate that these products or suppliers are endorsed by the
National Institute of Standards and Technology (NIST), or are
recommended by NIST, or that they are necessarily the best materials
or suppliers for the purposes described.

 2

1. Introduction

This user manual describes the installation and use of a toolbox for the creation of
computer-generated holograms (CGHs) for interferometric precision surface metrology
(in the following referred to as the “CGH toolbox”) [1]. The manual describes the core
toolbox functions that must be called to calculate the layout of a hologram that can be
submitted to a fabrication facility. Finally, several extensively commented examples
illustrate the functionality of the toolbox and the ways in which the toolbox can be
adapted for specific measurement needs. Reference [1] describes the details of the
algorithms that were developed for the CGH toolbox.

2. Installation Procedures and Prerequisites
In addition to the CGH toolbox itself, users must install two open-source toolboxes, one
that provides functions for manipulating planar polygons (“polygon-toolbox”), and a
second one that provides functions for the creation of lithographic layout files in GDSII
format (“gdsii-toolbox”). The installation procedures for the required components are
described below.

2.1 Gnu Octave
The CGH toolbox requires an installation of the GNU Octave software [2]. The toolbox
was tested with Octave versions 4.4 and 5.2. In addition to the basic installation of
Octave, the “optim” package, which provides functions to solve optimization problems,
and the “parallel” package, which provides functions for parallel processing on multi-
core computers, must be installed following the instructions on the Octave web site.
The “parallel” Octave package currently does not work on Windows versions of
Octave. The CGH toolbox will still work without the parallel package, but it will not be
possible to take advantage of multi-processing.

2.2 CGH toolbox
All files of the CGH toolbox are stored in a compressed archive with the name
cgh-toolbox-<version>.zip. The first step of the installation process is to unpack
the archive into a convenient directory, or folder, e.g.:

~/Toolboxes

Then, in Linux or MacOS, change to the toolbox directory

cd ~/Toolboxes/cgh-toolbox

 3

and, at a shell prompt, run the

./makemex-octave

script in the top level directory of the toolbox.. This will create two “Matlab extension”
(.mex) files that are needed for some of the toolbox functions. In Windows, the .mex
functions of the CGH toolbox must be compiled from within Octave. Start Octave and
change the current working directory to the top level directory of the CGH toolbox.
Then run

>>makemex

to create the necessary .mex files.

2.3 GDSII toolbox
Holograms calculated by the CGH toolbox can be converted into layout files in the
Graphics Design System Information Interchange (GDSII) format used by most
electron-beam or laser lithography systems using an open-source GDSII toolbox for
Octave and Matlab [3]. GDSII layout files can be used to fabricate holograms in
research foundries, or they can be submitted to commercial fabrication services. The
installation process for the GDSII toolbox is the same as for the CGH toolbox. The
archive of the GDSII toolbox (.zip file) is unpacked and the makemex-octave script in
the top level directory of the toolbox is executed at a shell prompt in Linux or MacOS.
In Windows, the makemex script in the toolbox top level directory must be run from
within Octave.

2.4 Polygon toolbox
The polygon toolbox primarily consists of external (.mex) functions that must be
compiled before they can be used by Octave. The process is the same as for the CGH
toolbox.

2.5 Setting the Octave search path
All toolboxes must be contained in the Octave search path. This is accomplished by
including the line

addpath(genpath(‘FULL NAME OF TOOLBOX DIRECTORY’));

 4

to the Octave startup file .octaverc for each of the toolboxes. An example of a startup
file with the required modifications is shown in the appendix. Once the changes to the
startup file are made, Octave must be restarted. The correct installation of the
toolboxes can be verified by issuing the following commands at the Octave prompt:

>>cgh_version
>>gdsii_version
>>polygon_version

In each case the toolbox version is displayed in the format

Interpreter version : Octave 4.4
GDSII Toolbox version : 144 (2019-August 18)

if the toolbox installation was successful. An error message at this stage is most likely
the result of an incorrect entry in one of the search paths in the startup file, which
prevents the toolboxes from being found. The correct inclusion of the toolboxes in the
search path can also be verified with the path command in Octave.

2.6 Layout viewers
Layout files in GDSII format can be evaluated with many commercial software tools
that are available for editing and viewing electronics design layouts. Klayout is an
open-source tool that works well for the diffractive optics layouts created by the CGH
toolbox [4].

3. Core Functions
From a user of toolbox, the creation of a metrology hologram with the CGH toolbox
requires three function calls to create a domain tiling (polytile), to define options
and parameters for the CGH (cghparset), and, finally, to generate the CGH
(phase2cgh). These three function calls are typically combined in a script file that is
specific to each application of the CGH toolbox. Several example scripts are distributed
with this user manual.

 5

3.1 polytile
The polytile function generates a rectangular tiling that covers the hologram domain
to enable, among other things, the efficient calculation of large holograms on multi-
core computers (see discussion in Ref. [1]). The use of this function is illustrated in the
demo_tiling.m script in the directory Examples/tiling.

[stile] = polytile(bnd_out, bnd_inn, tilpar, plotpar=[]);

Input
bnd_out The two-dimensional domain of a hologram has an outer boundary

described by a polygon of arbitrary length. The polygon is specified as a
m×2 matrix where every row contains the coordinates of a polygon
vertex.

bnd_inn The hologram domain can have inner boundaries, which are also
specified as m×2 matrices. When the domain has more than one inner
boundary, the argument bnd_inn must be a cell array of polygons.
Inner boundaries may overlap, and an inner boundary may overlap
with the outer boundary.

tilpar This argument specifies the size and positioning of the tiles in a tiling. In
the simplest case, tilpar is a scalar that specifies the width of square
tiles. Rectangular tiles can be generated by assigning tilpar a 1×2
vector containing the width and the height of the tiles. tilpar can also
be a structure with an offset field that makes it possible to control the
placement of the tiling relative to the coordinate origin (see help text of
polytile).

plotpar For diagnostic purposes the tiling can be plotted, with or without tile
numbers. The values in the plotpar structure control various aspects of
the tiling plot.

Output
stile A tiling is described as a structure array where each tile is specified by

the coordinates of its lower left corner (stile(k).llc) and its upper
right corner (stile(k).urc).

 6

3.2 cghparset
Parameters and options for the CGH computation are combined in a structure. The
setcghpar function is a convenient way to set the parameters and tolerances and to
provide default values.

cghpar = cghparset('par1',val1, 'par2',val2, …);
cghpar = cghparset(oldpar, 'par1',val1, 'par2',val2, …);

Input
The arguments to this function must be specified as a variable number of keyword-
value pairs. An existing parameter structure is modified when it is passed as the first
argument. Keyword-value pairs can be specified in any order. Unspecified parameters
are assigned a default value.

Keyword Value
algorithm A two-character string that selects the algorithm used to calculate the

hologram. ‘pa’ selects the pilot approximation algorithm, ‘fi’ the isophase
following algorithm, and ‘hi’ the algorithm for phase functions with
Hilbert phase terms. See Ref. [1] for a discussion of the algorithms.
The default value is ‘fi’.

vphase A 1×2 vector containing the phase boundaries of “opaque” Fresnel half-
zones. Specifying [ϕ1 , ϕ2] implies all phase boundaries
[ϕ1 , ϕ2]+2πk ,k∈ℤ . The areas of the hologram domain where the phase

function is within the specified phase boundaries are returned as closed
polygons. The default value is [0,π].

tol A structure containing the tolerances that control the computation of
holograms. Default values are assigned to unspecified fields. Default
values assume μm length unit. The structure has the following fields:
vertex The position tolerance of the polygon vertices. The

default is 10-4 length units. The length unit will
typically be the μm, and the corresponding default
tolerance is 0.1 nm, sufficient for even the most
advanced e-beam lithography systems.

segdev Phase boundary curves are approximated by polygons
that deviate from the curve between vertices. Polygon
vertices are spaced along the boundary curve such that
the deviation is equal to segdev. The default value is
5×10-3 length units (5 nm when length unit is μm).

 7

seglen The boundary detection algorithm may fail near points
where the curvature of a phase boundary changes sign.
In this case the polygon segment length must be given
an upper limit, e.g. 10 μm. The segment length is not
limited by default.

maxit The precise location of vertices on phase boundary
polygons is found using an iterative level-finding
algorithm. This field sets an upper limit for the number
of iterations. The default limit is 150 iterations. Far
fewer iterations are typically required to find polygon
vertices.

maxbs Before the position of a vertex on a phase boundary
curve can be calculated, two points on either side of the
boundary must be found such that they bracket the
vertex point along a line normal to the phase boundary.
The field value limits the number of bracket search
iterations. The default value is 32.

hderiv Numerical derivatives of phase functions are calculated
using a symmetric secant approximation. This field
specifies the spacing of the points at which the phase
function is evaluated to compute derivatives. The
default is 15×10-3 length units. Very small values can
result in numerical instability.

discon For phase functions with discontinuities, this field
specifies the tolerance with which the discontinuity is
located. The default is 15×10-3 length units.

maxpol The maximal number of polygon segments with
identical phase that are connected by the phase filling
algorithm. The default value is 10. It is rarely
necessary to join more than two or three segments. A
large number of segments usually indicates an error.

grid A structure defining the phase function sampling grids for tile areas and
tile edges that are needed to calculate initial approximations for
isophase lines and their edge intersections. The structure has the
following fields:
area A 1×2 vector with number of samples in the x- and y-

directions. The default value is [100,100].

 8

edge Number of samples along tile edges. The default value
is 10000.

sing(k) A structure array with information regarding phase singularities in
phase functions with Hilbert terms. All singularities must be located on
tile edges. Phase functions can have multiple singularities, but each tile
can have only one singularity on one of its edges. The default value is an
empty matrix, []. If present, the structure (array) must have the
following fields:
pos A 1×2 vector with the coordinates of the singularity in

the plane.
era A scalar with an exclusion radius around the singularity

that is used in detecting the proximity of the singularity
to a phase boundary curve. A value of 0.05 (50 nm when
the design unit is μm) works well. No default value.

aperture(k) A hologram calculated on a tiling will generally extend beyond the
desired boundaries of the hologram. This field contains a structure array
with polygons and and Boolean set operations that can be applied to the
polygons describing the output hologram. The structures have the
following fields.
poly A closed polygon (m×2 matrix of vertices) for a Boolean

set operation.

oper aperture(k).oper is a string specifying a Boolean set
operation that will be applied to the set of hologram
polygons (first operand) and the polygon defined in
aperture(k).poly (second operand). Available set
operations are ‘or’ (set union), ‘and’ (set intersection),
‘notb’ (set difference), and ‘xor’ (exclusive difference).
When more than one operation is defined, the order in
which they are applied matters. No default value.

debug This variable is set to false by default, and any errors that occur during
the calculation of a hologram layout in a tile area are trapped and the
tile number is displayed. When the value is set to true Octave displays
the error location in the usual way. Default value is false.

Output
cghpar A structure containing all tolerances and parameters.

 9

3.3 phase2cgh
This function is called to carry out the computation of a hologram.

cap = phase2cgh(stile,fphase,phapar,cghpar,ncpu=[],verbose=0);

Input
stile A structure array with a rectangular tiling of the hologram domain;

usually the output of the polytile function.
fphase A function handle of the phase function. Phase functions must have the

form fphase(X,Y,phapar), where X and Y are vectors with coordinates
in the hologram plane, and phapar is a structure with phase function
parameters. The CGH toolbox provides a set of commonly used phase
functions, e.g. for polynomial models that can be used as templates for
new, problem specific phase functions.

phapar A structure with phase function parameters.
cghpar A structure with tolerances and parameters for a CGH; usually the

output of the cghparset function.
ncpu An optional argument to specify the number of processors, or logical

processing units, that are used for the CGH computation. All available
processors are used by default (as long as the Octave parallel package is
available).

verbose A optional argument that controls the detail of progress information that
is displayed. The default value is 0 (no information). When the argument
is set to 1, a message is displayed every time the processing of a new tile
begins. A value of 2 results in much more detailed information that is
primarily useful for debugging

Output
cap A cell array of closed polygons circumscribing hologram fringes.

 10

4. Debugging Strategies
Locating errors (“bugs”) in software that is executed with a high degree of concurrency
on multi-processor computers can be a challenge. When the calculation of the
hologram for a specific tile area fails it can be difficult to identify the tile on which the
error occurred. The CGH toolbox can assist with the location of errors. By default any
errors that occur during the calculation of the hologram for an individual tile are
trapped and an error message together with the number of the tile on which the error
occurred is displayed. The tile number information can be used to restrict the
computation to the tile that causes the problem. For example, if an error occurs on tile
number 157, the following line can be added after the call to the polytile function
which generates a tiling:

tiles = polytile(…);
tiles = tiles(157);

When the script is executed again, the hologram is calculated only for tile 157. In
addition, the debug flag in the CGH parameters should be set to true. Errors will then
no longer be trapped, and a function call trace that precisely locates the error and its
cause will be displayed instead.

5. Examples
This CGH toolbox user manual is accompanied by a set of example scripts which
demonstrate a range of toolbox applications. In this section we provide brief
discussions of the example scripts together with illustrations of their output, which can
be used to ascertain the correct function of the CGH toolbox.

5.1 Fresnel Zone Lenses
The directory Examples/fresnel contains
scripts that generate a Fresnel zone lens. The
zone lens has a diameter of 20 mm and creates
a focus, in first diffraction order, at 100 mm
distance from the zone plate when it is
illuminated with collimated light from a
helium-neon laser. Two of the scripts, with
suffixes ‘pa’ and ‘fi’ illustrate the use of
different algorithms for the computation of the

 11

Examples/fresnel/layout_fresnel_rotinv.m

zone lens. The zone lens hologram can also be computed much faster by taking
advantage of the rotational symmetry of the zone lens. This alternative approach is
illustrated in the script with the ‘rotinv’ suffix. Comparing the hologram layouts
generated by these scripts verifies that Fresnel lens holograms calculated with the
algorithms provided by the CGH toolbox are identical to holograms based on the
Fresnel zone radii that can be found in basic optics texts [5].

5.2 Rotationally Invariant Holograms
Form errors of rotationally invariant
(aspheric) surfaces can be measured with
rotationally invariant holograms (although
this is not necessarily the best choice). When
a radial phase function model is available,
the hologram layout can be calculated in the
same simplified way as the Fresnel zone
lens in Sec. 5.1. The example script
layout_hyperbola_rotinv.m in the
directory Examples/hyperbola provides
an illustration. The script calculates two
rotationally invariant holograms, a ring-shaped alignment hologram that is used to
align the CGH in the converging test beam of a Fizeau interferometer, and a hologram
for generating the test wavefront, in this case for a concave hyperbolic mirror. The
radial phase functions for both holograms are polynomial models that were calculated
with the commercial ray-tracing software used to model the measurement setup. For
illustration purposes the holograms are calculated with two different methods. The
alignment hologram is calculated with the simplified approach suitable for rotationally
invariant phase functions, while the main hologram is calculated with the isophase
following algorithm of the CGH toolbox. A phase function for a rotationally symmetric
test part can also be modeled as a two-dimensional polynomial. This was done in the
script layout_asphere_doe.m in Examples/asphere.

5.3 Holograms with Tilt or Decenter
Holograms used for surface metrology applications are often not rotationally
symmetric, because it is more difficult to block stray light that is created by the higher
diffraction orders of a binary hologram when the hologram is symmetric about the
optical axis. An increased amount of stray light tends to degrade the measurement
result, leads to “hot spots” at the center of the interferometer’s field-of-view, and
increases the measurement uncertainty. Separation of diffraction orders is easier to
achieve when the hologram is either tilted or de-centered by a small amount in the test

 12

Examples/hyperbola/layout_hyperbola_rotinv.m

beam of the interferometer, which is equivalent to adding a tilt carrier frequency to
the hologram. The range of line widths in a hologram with tilt carrier is much smaller
than in a hologram with a point of stationary phase, which makes the hologram easier
to fabricate.

5.4 Multiplexed Holograms
For measurements that require a low
measurement uncertainty it may be
desirable to encode two wavefronts into a
hologram, one spherical wavefront that can
be used to calibrate the interferometer
errors, and the non-spherical test
wavefront. The simplest way to encode
more than one wavefront into a hologram
is through spatial multiplexing in which
different areas of the hologram contain
sections of different holograms. An
example of this approach is given in the
Octave script layout_dual_freeform_cgh.m in directory Examples/freeform. In
this example, two holograms are interleaved in 100 μm wide strips. One hologram
generates a spherical wavefront, and the second one generates the test wavefront for a
freeform surface. Both wavefronts have an angular offset so that both wavefronts can
be aligned individually to a reference sphere or the test part with the freeform surface.

5.5 Compound Holograms
A metrology hologram for surface form metrology
will consist of several sub-holograms with different
functions in almost all applications. For example, in
addition to the hologram that creates a test
wavefront, one or more holograms may be
required to align the hologram substrate in the test
beam of an interferometer. A simple example is the
hologram created with the
layout_hyperbola_rotinv.m script (see Sec. 5.2),
which has a ring-shaped alignment hologram to
position and align the substrate in the beam of a
Fizeau objective (transmission sphere). A more

 13

Examples/freeform/layout_freeform_dual_cgh.m

Examples/multiple/Generate_cgh.m

elaborate example is in Examples/multiple. This hologram contains 9 sub-holograms
needed for alignment purposes. Several of the holograms have a large line density and
their computation is time consuming. A “divide-and-conquer” strategy for handling
challenging compound holograms is illustrated in the scripts Generate_cgh.m and
Assemble_cgh.m. In the design of a complex test setup, the phase function of the
holograms is often revised multiple times. The script shows how the computation of
holograms can be made more efficient by, for example, restricting the computation to a
subset of holograms that have been revised. The example script also shows how an
artificially large wavelength can be used to better visualize the Fresnel zones of a
hologram, or to rapidly compute a “draft version” of a hologram, which is helpful
during the design stage of a test setup.

5.6 Holograms with Hilbert Terms
Phase functions can have phase singularities and
discontinuities (branch cuts), of which Hilbert phase
terms are a prominent example. Hilbert phase
functions describe optical beams with helical
wavefronts that are finding an increasing number of
applications in optics [1]. A Hilbert phase term, when
combined with a Fresnel phase, results in
characteristic bifurcations of Fresnel zones, and the
concentric zones of a Fresnel zone lens are
transformed into spirals. The CGH toolbox can create
hologram layouts from phase functions containing
one or more Hilbert terms, with some limitations. A
tile of the CGH domain tiling can only have one
singularity, which must be located on the tile edge, and the tiling must be designed to
meet this requirement. A second requirement is that that the discontinuity must not
coincide with a tile edge.

5.7 Multi-Level Holograms
Holograms used for surface form metrology are
generally binary holograms because they have
the lowest fabrication cost. Fabrication of phase
holograms with higher diffraction efficiency
requires lithography processes with multiple,
overlayed exposures. The script in
Examples/multiphase illustrates how the CGH
toolbox may be used to create layouts for

 14

Examples/multiphase/layout_multiphase.m

Examples/hilbert/layout_two_sing.m

holograms with multiple phase levels. Generally, N exposures, followed by an etching
process, can create holograms with 2N phase levels. The script layout_multiphase.m
illustrates this for a hologram with four phase levels. The layouts for the two exposure
steps are placed on two different GDSII layers. The etch depth following the first
exposure must be twice the etch depth following the second exposure. The phase
function used in the example script layout_multiphase.m is the same function that
was used for the main hologram in layout_hyperbola_rotinv.m.

5.8 Runtimes
The time required for the computation of a hologram depends on a multitude of
variables. Hologram area and line density are among the most important, as is the
degree of parallel execution that can be achieved on the available computing platform.
The following table contains the execution times for some of the example scripts to
help users estimate the computing resources needed for their own applications. The
third column refers to the number of Octave instances running in parallel to calculate
sections of the CGH on different tiles, which was chosen to be the same as the number
of available logical central processing units (CPUs). For similar processors, the runtime
scales roughly in inverse proportion to the number of instances.

Script Platform / Architecture Instances Runtime
asphere/
layout_asphere_doe.m

Intel i7-3960X / x86_64 12 60 m 37 s

Intel Xeon E5-2699 / x86_64 72 11 m 37 s
freeform/
layout_freeform_dual_cgh.m

Intel i7-3960X / x86_64 12 20 m 17 s

Intel Xeon E5-2699 / x86_64 72 4 m 18 s

Amlogic S922X / ARM64 v8 6 1 h 15 m
synchrotron/
layout_sn1_cgh.m

Intel Xeon E5-2699 / x86_64 72 29 s

Intel i7-3960X / x86_64 12 2 m 8 s

Amlogic S922X / ARM64 v8 6 6 m 16 s
multiple/
Generate_cgh.m

Intel Xeon E5-2699 / x86_64 72 93 m 43 s

 15

Appendix: A sample Octave initialization file .octaverc

This is an example of a user-specific initialization, or startup, file for Octave. This file is
a text file that can be created with any text file editor, including the file editor built into
Octave. The initialization file has the name “.octaverc” on Linux, MacOS, and Cygwin
and is located in a user’s home directory. For the native Windows version of Octave,
the startup file is typically located in the directory “C:\Users\USERNAME”.

%--- beginning of startup file ---------------------------------
warning("off", "Octave:possible-matlab-short-circuit-operator");

% set toolbox paths
addpath(genpath('/home/ulfg/Toolboxes/cgh-toolbox'));
addpath(genpath('/home/ulfg/Toolboxes/polygon-toolbox'));
addpath(genpath('/home/ulfg/Toolboxes/gdsii-toolbox'));

% load always needed packages (optional)
pkg load optim
pkg load parallel % currently not on Windows
pkg load symbolic

% default font sizes (optional)
set(0, 'defaultaxesfontname', 'Noto Sans');
set(0, 'defaultaxesfontsize', 14);
set(0, 'defaulttextfontname', 'Noto Sans');
set(0, 'defaulttextfontsize', 16);

% better looking prompt (optional)
PS1('octave:\#> ');
PS2('> ');
PS4('+ ');

% turn off pager (optional)
more off
%--- end of startup file ----------------------------------

Note that in Windows the search paths must be preceded by a drive letter, e.g.
 addpath(genpath('c:/home/ulfg/Toolboxes/cgh-toolbox'));
or
 addpath(genpath('c:\home\ulfg\Toolboxes\cgh-toolbox'));

 16

References

1. Griesmann U, Soons JA, and Khan GS (2019) A Toolbox for Isophase-Curvature
 Guided Computation of Metrology Holograms, J. Res. NIST
2. Eaton JW et al. (1996-2019) A high-level interactive language for numerical
 computations. Available at https://octave.org
3. Griesman U (2008-2019) An Octave and Matlab toolbox for layout files in GDSII
 format. Available at https://github.com/ulfgri/gdsii-toolbox
4. Köfferlein M (2006-2019) Klayout – High performance layout viewer and editor.
 Available at https://www.klayout.de
5. Hecht E (2016) Optics, 5th Edition

 17

https://octave.org/
https://www.klayout.de/
https://github.com/ulfgri/gdsii-toolbox

